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substitute for our 'aberration function'; this mono- 
chromator function would describe the intensity 
passed by the monochromator as a function of 
wavelength, including 'band-pass '  limits at the two 
ends and could thus have the effect both of altering 
the effective Ka2 to Kal  intensity ratio and of adding 
a white-radiation component that is so clearly needed. 

We emphasize that all our experiments have been 
made at low temperature (20 K or less) and we have 
assumed thermal diffuse scattering to be negligible. 
At higher temperatures, TDS becomes appreciable, 
perhaps being as large as, and in the opposite sense 
from, truncation losses. Conceivably, then, one could 
end up worse off by correcting room-temperature data 
for truncation while ignoring TDS. But our work on 
truncation is based on the fact that, for careful work 
in such areas as electron-distribution studies and 
highly precise bond-length determinations, low- 
temperature data are of utmost importance (par- 
ticularly for molecular crystals), not only to avoid 
TDS but also to permit the accurate determination 
of the displacement parameters U~j that is afforded 
by high-angle intensity data. For such experiments, 
truncation losses are extremely important: an 
intensity loss of 15% at 20 =40 ° for Mo radiation 
corresponds to an apparent increase in the isotropic 
component of the atomic displacement coefficient U 
of over 0.004,~2. Further efforts to arrive at con- 
venient and reliable methods of correcting for such 
losses are clearly warranted. 

Afterword 

At the suggestions of thoughtful referees, we add a 
few comments. 

(1) We emphasize that the "basic profile' depends 
on the characteristics (size, mosaic character, etc.) of 
the particular crystal being studied; it would be 
dangerous and unjustified to use the basic profile for 
one crystal in analyzing the high-angle profiles of 
another. 

(2) Our recommendations for low-temperature 
measurements apply to molecular crystals. For many 
inorganic systems with high Debye temperatures, 
measurements at or near room temperature might 
well be adequate. 

(3) Our experimental data were, as we have noted, 
obtained with the monochromator in the perpen- 
dicular orientation. For instruments with a parallel 
configuration, expressions for the spectral resolution 
would need to be modified. 

(4) An interesting experiment, which we have not 
carried out, would be to measure the band-pass 
characteristics of the monochromator, perhaps (as 
suggested by Mathieson, 1989a) by scanning the 
profile using a very narrow slit. 

(5) We regard this work as developmental; while 
RD has devised many computer programs to carry 
out the various calculations, these programs are being 
continuously revised and have not been thoroughly 
debugged. Thus, they are not available for distri- 
bution. 

We are indeed indebted to Professor A. McL. 
Mathieson for many helpful and insightful comments. 
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Abstract  

Energy-dispersive diffuse X-ray scattering is a par- 
ticularly appropriate technique for use with high- 
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energy synchrotron-radiation sources. Its multiplex 
and geometric advantages are outlined and the com- 
paratively simple principles behind the technique are 
detailed. The energy-dispersive scan spreads scatter- 
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ing in reciprocal space along radial lines, with equal- 
energy steps corresponding to equal-scattering-vector 
steps. In a typical experimental configuration, the 
resolution function of the apparatus is substantially 
lozenge shaped in reciprocal space: modest resolution 
is obtained along radial lines whereas good resolution 
can be obtained in transverse directions if the limiting 
geometrical factors are kept narrow. The factors 
influencing the conversion of the observed scan 
intensities to absolute units are discussed and 
methods given of minimizing the difficulties. Paper 
II of this series will discuss the application of these 
methods, notably to measurements of silicon. 

Introduction 

Diffuse X-ray scattering studies are to be found in 
recent literature on a wide range of materials and for 
an equally wide range of purposes. Extended dis- 
cussions can be found, for example, in articles by 
Schultz (1982) on applications to materials science, 
Welberry (1985) and Jagodzinski (1987) on disorder 
scattering and Lal (1989) on point-defect aggregates 
in single crystals, in addition, many articles cover 
specific diffuse-scattering measurements on low- 
dimensional structures, superionic conductors, super- 
conductors, organic crystals and other systems. 
Nonetheless, the experimental determination of 
diffuse X-ray scattering has been hampered by two 
features of the phenomenon: its weakness and the 
necessity to measure diffuse scattering over an exten- 
ded region of reciprocal space to determine its struc- 
ture. Experiments are notoriously time consuming 
and difficult to calibrate. Several approaches to these 
difficulties promise to reduce them substantially. 
Increasing the incident flux in a traditional mono- 
chromatic-scattering apparatus by operating the 
scattering experiment close to a synchrotron-radi- 
ation source has been shown to be effective under 

favourable conditions (Matsubara & Georgopoulos, 
1985; lwasaki et al., 1989). For more general use, it 
is highly desirable to employ experimental techniques 
with some multiplex advantage. (The term multiplex 
is used here in its spectroscopic sense, implying a 
simultaneous recording of all the resolution elements 
and, usually, subsequent processing to extract the 
desired information.) 

A variety of position-sensitive detectors have been 
developed to allow an extended arc in reciprocal 
space to be sampled during a single measurement 
(Hashegawa et aL, 1986). Maeta et aL (1988) report 
dittuse-scattering measurements made with a single 
setting of such a detector, while Osborn & Welberry 
(1990) describe the technique in some detail. Area 
detectors in the form of CCDs, high-pressure propor- 
tional counters and photoluminescent image plates 
have developed considerably over the past few years. 
Although all have coarse spatial resolution in com- 
parison with the best photographic film, the image 
plate in particular has now developed to offer a much 
wider dynamic range than conventional film and an 
improvement in photon sensitivity by about two 
orders of magnitude, lwasaki, Matsuo, Ohshima & 
Hashimoto (1990) reported one of the first diffuse- 
scattering studies using such a device. In this paper 
a third multiplex method is outlined, using the Laue 
geometry of fixed detector and fixed crystal illumi- 
nated by a broad-band X-ray beam. 

In this method, the diffuse scattering is displayed 
on an energy-dispersive detector whose spectrum 
directly maps a line of scattering vectors, as shown 
in Fig. 1 and explained fully in the next section. The 
principle was first exploited by Harada, lwata & 
Ohshima (1984) using white radiation from a rotating- 
anode source but it is most appropriately developed 
in the context of a synchrotron-radiation source. 
The counting advantage over a monochromatic 
experiment is twofold. Firstly, an entire scan is 
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Fig. 1. Schematic diagram of the energy- 
dispersive diffuse X-ray scattering tech- 
nique. The energy spectrum maps onto 
the scattering from a radial line of scat- 
tering vectors K of length from d*  m to 
d*a~ determined by sin 0. 
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collected at once (the multiplex advantage). 
Secondly, the energy resolution of a solid-state 
energy-dispersive detector has a bandpass that is typi- 
cally 100 times greater than the bandpass of a single- 
crystal mosaic monochromator.  Hence, a much larger 
fraction of the incident-beam spectral distribution 
contributes to the scattering in each counting channel 
than in a monochromatic experiment. The energy 
bandpass is in fact much better matched to the 
geometric contributions to the resolution of a typical 
scattering experiment than is the case with a crystal 
monochromator.  

Some other advantages of the technique are that it 
needs only comparatively simple and correspond- 
ingly less-expensive station apparatus; it allows a 
reduction in observing time or, alternatively, the use 
of samples too small to contemplate by traditional 
means; operationally, Laue geometry is easier to set 
up and maintain on a diffractometer than monochro- 
matic geometry. The energy-dispersive scan covers a 
straight line of scattering vectors in reciprocal space, 
in contrast to the curved lines scanned by position- 
sensitive methods. A whole plane of reciprocal space 
may be scanned simply by a scattered beam emerging 
through a single hole in the sample chamber, provided 
only that the sample can be rotated independently 
about the main diffractometer axis. This has potential 
advantages for measurements at high pressure, vari- 
able temperature or other specialized sample envi- 
ronments. Two or more energy-dispersive detectors 
recording simultaneously at different 20 will allow a 
scattering plane to be scanned at coarse and fine 
resolution simultaneously. Alternatively, there is the 
possibility of having a range of out-of-plane counters 
detecting simultaneously, such as have been em- 
ployed on neutron time-of-flight apparatus. Most of 
these possibilities remain to be explored. 

In the following sections, the principles of the 
technique are laid out and in paper Il an application 
is made to a determination of the thermal diffuse 
scattering from silicon. 

Princ ip les  o f  the technique  

The spatial Laue scattering pattern, which is that 
recorded photographically, is the pattern given by a 
single mirror reflection of the incident X-ray beam 
from each crystal plane. As with a system of mirrors, 
if the crystal is rotated the pattern of Laue spots 
rotates in the same direction at twice the speed. To 
appreciate the diffuse scattering observed within the 
apparently fixed geometrical form of the Laue pat- 
tern, attention must be paid to the other dimension 
of the pattern, its energy. A given index of Laue spot 
has its highest energy when the spot is closest to the 
straight-through direction (smallest 20); the spot 
slides down the energy scale as it rotates towards the 
back-reflection direction. Indeed, the spot will fade 

out if the energy required is below the smallest photon 
energy available in the incident beam. 

For any fixed position of the crystal, the detector 
records scattering with scattering vectors along a 
radial line in reciprocal space, each scattering vector 
contributed by a different incident and scattered 
energy. An energy-dispersive detector therefore sep- 
arates each scattering vector along this radial line, 
within the limits of its energy resolution. For example, 
Laue spots that correspond to superimposed Bragg 
reflections are separated by an energy-dispersive 
detector into a spectrum of equally spaced lines cor- 
responding to the Bragg reflections, with the diffuse 
scattering along the same radial direction in 
reciprocal space appearing between these lines. Once 
the Laue pattern is seen in energy space as well as 
reciprocal space, the diffuse-scattering component 
becomes simpler to visualize. 

Indeed, the scope and limitations of recording 
diffuse scattering can be deduced directly from first 
principles. Let K be the scattering vector for a fixed 
counter (20) and fixed crystal. In terms of incident 
and scattered wave vectors, 

K = k ' - k o .  (1) 

In a notation similar to that used in International 
Tables for X-ray Crystallography (1983), 

K = h a * +  k b * +  lc* = H • A*, (2) 

where 

n = ( h  k l). (3) 

In general, h, k, l are noninteger and 

A*= b* (4) 

C* 

defines the unit vector in reciprocal space with 

a* = 2rrb x c/V, (5) 

where V is the volume of the real unit cell whose 
unit vectors are a, b, c; similarly for b* and c*. The 
distinction between K, measured in A i, and H, a 
measure in terms of the reciprocal-cell dimensions, 
is important. 

The length of K, which determines the wavelength 
of the Laue scattering, is given through the reciprocal- 
space metric G -~ 

G-1 

( ~  (a*)2 a ' b ' c o s T *  a ' c ' c o s  \ 

= *b* cos y* (b*) 2 b'c* cos a* ) *c* cos/3* b'c* cos ~* (c*) 2 

(6) 

as d*, where 

IKI 2= (d*) 2= HG-~H ,. (7) 
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For a cubic crystal with a as the cubic-lattice constant, 
this reduces to 

d * =  2zrlal/a. (8) 
The wavelength, A, and hence the energy, for any 

scattering vector is found through Bragg's law, 

where 

Equivalently, 

)t = 2dK sin 0, (9) 

dK = 27r/ d*. 

d* = 47r(sin 0)/A, (10) 

with d* being determined from (7). For a cubic 
crystal, 

dK=a/lHI, ( l l )  

whence (9) becomes the familiar 

2a sin 0 = JHIA. (12) 

For a given wavelength range, from •min to Amax, 
the range of reciprocal space in/~-~ seen by a fixed 
energy-dispersive detector is from d* min to  d~max where 

dmi n = 4-a'(sin 0)/A . . . .  d*ax = 4rr(sin 0) / / ILmin ,  

(13) 
hence the range, * drange, is 

drang e = 1 .01355(Emax  - -  Emin) s in  0, (14) 

where the corresponding photon energies are ex- 
pressed in keV. For a cubic crystal, 

]Hlra,se = 2a(sin 0)(1/Amin- 1/Amax). (15) 

It follows from these equations that, for a detector 
of fixed energy spread, the range of ]K] scanned 
increases with sin 0; the minimum value of IKI also 
increases with sin 0. Equal steps in energy, AE, cover 
equal lengths in reciprocal space Ad*, where the steps 
again depend on sin 0: 

Ad*= 1.01355AE sin 0 (16) 

(AE in keV). The obvious strategy for measuring 
diffuse scattering in Laue geometry is therefore to fix 
20 such that the energy range of the detector covers 
an appropriate range in reciprocal space. The crystal 
is then rotated so that successive radial lines in 
reciprocal space are recorded by the detector. If the 
to axis alone is turned (the axis parallel to the prin- 
cipal axis of the diffractometer) then a fan of radial 
lines in the scattering plane will be sampled. The 
inherent restriction of the scan to radial lines in 
reciprocal space is a significant difference between 
the Laue scan and a position-sensitive detector or a 
neutron time-of-flight scan, where the orientation of 
the scan depends on 20. 

The method will fail to record weak diffuse scatter- 
ing if a Laue spot enters the counter for a chosen 

crystal orientation, due to saturation of the counter 
by the Laue intensity. In general there is a Laue spot 
in every direction in reciprocal space, if one considers 
a high enough reflection index. However, for materi- 
als with a small unit cell, the energy associated with 
high-index Laue spots is correspondingly high, from 
(7) and (9), and for most of these spots is outside the 
range of incident-beam energy and detector response. 
Nonetheless, their potential presence shows that a 
rapid high-energy fall-off in the incident-beam spec- 
trum and in the detector response is advantageous. 
The Debye-Waller factor and the general decrease 
in scattering factors also helps to reduce the intensity 
of unwanted high-index scattering. 

Viewed alternatively, the Ewaid sphere is the con- 
tour of scattering vectors sampled at constant diffrac- 
tion energy. Hence a material with a large unit cell 
has as many Laue spots within this contour as a small 
unit cell would show for radiation of a correspond- 
ingly higher energy. In both cases (14) suggests that 
the same method is used to produce a smaller d* 
range (removing unwanted high-index spots), namely 
to scan the given range of H by choosing a small 
value of 20. 

Resolution limitation 

The resolution limitation of a technique is an impor- 
tant consideration for diffuse-scattering experiments, 
particularly in relation to how close one can approach 
a Bragg reflection. The resolution of the Laue tech- 
nique in the radial direction in reciprocal space is at 
least the energy resolution of the detector, through 
(16). Fig. 2(a) illustrates the corresponding geom- 
etry. If AE = 0.125 keV HWHM (half-width at half- 
maximum), as typically may be the case at lower 
energies for a high-purity Ge or Si(Li) detector, and 
20 =30 °, then the half-width Ad* =0.033 ~-~. (For 
the lowest energies the resolution is better.) As a 

~k_' 

_K k' K space  _ K_ space 

~ k _ o  _o 

(al (bt 

Fig. 2. (a) The finite size ofthe sample and detector both contribute 
a spread Ak' of scattered wave vectors. The corresponding 
spread of scattering vectors AK is Ak' cos 0 parallel to K and 
Ak' sin 0 perpendicular to K. (b) The finite energy resolution of 
the detector gives rise to a spread of scattering vectors AK that 
is parallel to K. 
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function of energy, the half-width at half-maximum 
energy resolution of the Gaussian peak of an energy- 
dispersive detector, AHWHM(E) in keV, is given by 
the expression 

A2HW.M(E) = A~t + kE, (17) 

where Ae, and k are constants (see, for example, 
Krumrey, Tegeler & Ulm, 1989). Typically, Ael= 
0.060 keV and k=0.001 keV, giving an increase in 
Ad* to 0.044 ,~-~ at about 25 keV. 

If one is interested in scattering that is located in 
a well defined region of reciprocal space, the strategy 
that maximizes the resolution in this region (i.e. 
minimizes Ad*) is to move the scattering to the largest 
practicable energy. This is simply achieved by reduc- 
ing 20 appropriately. 

The geometrical contribution to the resolution is 
likely to be dominated by the finite sizes of the sample 
and of the detector slit, the spread in incident-beam 
directions being comparatively negligible. These sizes 
both contribute to a spread in scattered wave vectors 
A k' perpendicular to k' and hence a spread of scatter- 
ing vectors AK with an orientation depending on 0, 
as shown in Fig. 2(b). For small 0 this spread is 
almost entirely radial, the transverse component 
being Ak' sin 0. For example, if detector and sample 
are both 1 mm wide and separated by 300 mm, for 
20 = 30 ° and a wavelength of 1 ,~ the transverse half- 
width resolution is 0.0054 ,~-1, a usefully small figure. 
Achievable reductions in 20, detector and sample 
sizes could improve the resolution to 0.001 ,~-~, 
though with an increase in practical problems. 

For the example values above, the geometrical 
contribution to the radial half-width resolution is 
0.021 A-~, significantly less than the energy-spread 
contribution. It is typical of this Laue technique 
that the overall resolution function can be strongly 
lozenge shaped, allowing a fine resolution in azi- 
muthal directions in reciprocal space and modest 
resolution in radial directions. The fine resolution can 
be degraded by the mosaic spread of the sample, 
which contributes a spreading purely transverse to 
the scattering vector K. To put this in perspective, 4' 
of mosaic spread results in a spread zaK of 1.16 x 
10 -3 d*. 

Conversion of measurements to absolute units 

If a counter observes a (dead-time corrected) flux of 
Jobs(K), in photons s -~, then the corresponding scat- 
tering cross section lexp(K), in electron units/cell,  is 
given by 

/oxo(K) 
= Jobs(K)A(O, q~, X, to, A )oft(1 + D)/J in(A )e(A ), 

(18) 

where A( 0, q~, k', to, A ) is the absorption-related factor, 

dependent on the detector angle 20, the crystal 
orientation angles (q~, X, to) and the wavelength, ;t. or, 
is the Thomson scattering cross section, given by 

or, = Ad(1 + kp c o s  2 20)A2c/R2(1 + kp), 

where A d is the area of the detector; kp is the polariz- 
ation fraction in the scattering plane; A,. is the Comp- 
ton wavelength of an electron, namely 3.86159× 
10  -13 m; R is the sample-to-detector distance. D is 
the apparatus-resolution correction, sometimes called 
the divergence correction, which is a measure of a 
systematic shift introduced by finite incident- and 
scattered-beam cross fire, finite counter resolution and 
finite sample mosaic spread. It depends on K, A and 
the scattering geometry. With sympathetic apparatus 
design it is small. J~,(A) is the flux delivered through 
the incident-beam-defining aperture by the (syn- 
chrotron) source, e(;t) is an efficiency function, 
including the efficiency of the detector and absorp- 
tion of air and windows, particularly at longer 
wavelengths. 

Complete conversion is achieved by evaluation of 
all the terms in (18). Useful conversion is achieved 
by evaluating the strong wavelength dependence of 
the multiplying terms and scaling by a (weakly 
wavelength-dependent) comparison with a known 
scatterer. The important terms in (18) are now 
examined. 

Synchrotron flux 

Knowledge of the synchrotron-radiation flux J~,(h) 
is essential to the conversion to absolute units. Syn- 
chrotron sources can be sufficiently well characterized 
as emitters of electromagnetic radiation that the flux 
available, its wavelength dependence and its polariz- 
ation can be calculated from first principles. Some 
sources have been treated as radiometric standards 
(Krumrey et al., 1989), though such accuracy is not 
usually achievable. The divergence of electron-beam 
trajectories, their spatial spread and the presence of 
field variations over the bending region are relatively 
minor complications that can be allowed for if the 
source is single and incoherent. The flux available 
over a finite aperture at the experimental station and 
its polarization should therefore be available as part 
of the synchrotron experimental station support. 
Alternatively, it can be independently calculated 
using a program such as that given by Reid (1989). 
Laundy, Cummings, Pattison, Honkim~iki & Sleight 
(1990) presented a comparison between absolute flux 
measurements and calculated flux measurements on 
the Daresbury wiggler line that show good general 
agreement, the differences being thought due to 
defects in the measured values. Related measure- 
ments on the radiation from a dipole magnet (at the 
same station used by the author) produced an excel- 
lent agreement between the observed and calculated 
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spectral profile (Laundy, Cummings & Pattison, 
1991). 

Quantities required to determine Ji,(A) are the 
average electron-beam current in the synchrotron ring 
during measurement, the source-to-sample distance, 
the spread parameters of the source and the beam- 
aperture sizes. If the beam itself is accurately 
monitored by a detector that is linear with intensity 
and spatial size, then allowance can be made for 
(small) changes in intensity that occur with instability 
of the source. We have not done this. The absorption 
of windows in the beamline can also be easily 
included. For the calculation to be relevant, the posi- 
tion of the beam-defining slits relative to the axis of 
the radiation cone must be centred (or known) to 
within, say, 20% of the actual r.m.s, opening angle of 
the radiation. This will be larger than the point-source 
opening angle on account of the finite source size 
and spread. The extent to which the position of the 
centre of the radiation cone at the experimental 
station is stable in time and between successive fills 
of the machine should be determined from operations 
staff or, better, by measurement. Fig. 3 sets the 
requirements in perspective. The contours illustrate 
the percentage error in the integrated flux that will 
be made when beam shifts are ignored. The effect 
increases strongly at smaller wavelengths, as the radi- 
ation cone narrows. Owing to uncertainties in several 
of the parameters determining Ji,(A), one would not 

Off-axis beam intensity variation 

. _  

~a 
-~ 0.5 
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Wavelength in Angstroms 

Fig. 3. Off-axis beam intensity variation. A slit 3 mm high and 
79 m from a 2 GeV source defines the beam (angular  equivalent  
38 ~rad).  The  slit is t ranslated vertically f rom the centre of  the 
radiat ion cone by up to 6 mm (1 mm = 12.7 ~rad).  The  contours  
show the calculated percentage error  in the received flux for  a 
range of  X-ray wavelengths if the shift is ignored. Flux integra- 
tions over  the slit width include convolut ions  over  the finite 
source size and divergence,  with figures appropr ia te  to the Dares- 
bury 2 G e V  source. The quant i ty  plot ted is 100 x (Ratio - l ), 
where Ratio = flux(axial s l i t ) / f lux(shif ted slit). 

expect a high absolute accuracy unless special care 
is taken, though the wavelength dependence should 
be relatively well represented. 

Absorption term 

The structural crystallographer is not on the whole 
worried about the total absorption of the sample 
but about the absorption anisotropy, particularly 
for samples in the form of needles or plates. Even 
then, the absorption obtained by calculation or by an 
empirical method produces only a correction to the 
fitted structure. In contrast, for the absolute conver- 
sion of diffuse-scattering intensities, the total absorp- 
tion term must be accurately evaluated. 

For a crystal bathed in a uniform parallel incident 
beam, scattering through an angle 20, the absorption- 
related scattering contribution is 

A(O,~,X, to, A)=n ~ exp[ -p . ( l+l ' ) ]dV,  (19) 
v 

where l and l' are respectively the path lengths of 
incident and scattered beams to the illuminated 
volume element d V within the sample and n is the 
number of unit cells per unit volume, 

n = Sgp /gW,  (20) 

where NA is the Avogadro constant, p the material 
density, W the molecular weight and g the number 
of molecules per unit cell. 

It is only practical to evaluate the absorption term 
under assumptions that are not mathematically pre- 
cise; where possible, experimental conditions should 
be made to favour these asumptions. The path lengths 
l, l' are evaluated with the assumption that all scat- 
tered rays are parallel, as would be the case for a 
detector at infinity. The detector distance should 
therefore be as large as possible. [The finite size of 
the detector is accounted for by the convolution term 
D in (18).] The incident and scattered radiations are 
assumed to have the same attenuation coefficient /.L. 
This is not quite valid for the Compton component 
of the scattering, the approximation being worse at 
large 20 where the Compton energy shift is greatest. 
Finally, though the approximation of a uniform 
incident white beam is not strictly true, either, for the 
very small opening angles at short wavelengths, it 
becomes less important in this region of the spectrum 
because the absorption itself falls dramatically with 
decreasing wavelength. 

The absorption integral of (19) must be calculated 
as a function of 20 and sample orientation, since it 
is likely that the sample will be strongly absorbing 
for at least some of the wavelength range of interest. 
Indeed, the wavelength range may well cover the 
complete absorption regime, from light absorption at 
short wavelengths to strong absorption at longer 
wavelengths, making A(O, ~, X, to, A) a critical term 
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in (18) that can vary by several orders of magnitude 
across the spectrum. The simplest analytic absorption 
correction is found with the semi-infinite slab whose 
face is perpendicular to the scattering plane, the shape 
used by Harada et al. (1984) in their pioneering 
experiment. In this case, 

A(O,q~,X, to, h ) = n / l x [ l + ( s i n a ) / ( s i n / 3 ) ] ,  (21) 

where a is the acute angle between the incident beam 
and the crystal surface and /3 is the acute angle 
between the detector direction and the crystal surface. 

The extended-face slab has, however, several disad- 
vantages: only reflection geometry can be used, sig- 
nificantly reducing the accessible range of scattering 
vectors K; only heavy-element materials have an 
adequate absorption coefficient at shorter wave- 
lengths to justify the semi-infinite approximation for 
modest sample thicknesses; part of the emerging scat- 
tered beam can be well separated from the incident 
beam, thereby making the effective source of the 
diffuse scattering large and hence degrading the 
resolution of the experiment. 

For a sample of any shape, at the longer wave- 
lengths sampled by the energy-dispersive detector, 
the sample is almost certain to be highly absorbing. 
In these circumstances only small parts of the sample 
contribute to the scattered intensity and the calcula- 
tion of the absorption by normal numerical means 
(such as Gaussian quadrature) becomes inaccurate. 
This inaccuracy arises because numerical methods 
divide the sample into lines of volume elements 
stretching across the sample; any density of elements 
sufficient to give an accurate answer when the contri- 
bution comes from small regions of the sample entails 
a division of the total volume into an excessive 
number of subvolumes for practical computation. 
Recourse has to be made to an analytic absorption 
calculation or under special circumstances of high 
symmetry a numerical evaluation must be formulated 
to overcome the difficulty. 

The general analytic method of de Meulenaer & 
Tompa (1965) for a convex polyhedral crystal pro- 
vides the basis for the evaluation of A(0, ~o, g, to, h ), 
provided the crystal is a well defined polyhedron. For 
diffuse-scattering measurements it is desirable that 
only the crystal is irradiated and not any of the crystal 
support, which can contaminate the spectrum with 
scattering of comparable strength. The scattered 
volume is therefore defined jointly by the crystal faces 
and the planes that define the incident beam above 
and below the scattering plane. If only a section of 
the crystal is irradiated, the geometry has to be further 
modified. In all cases, the absorption correction is 
calculated on the assumption that multiple scattering 
does not contribute significantly to the observed 
intensity. 

In the work to be reported in paper II, a crystal 
was used in the form of a long rod extending through 

Table 1. Estimate of  the long-wavelength limit (h) at 
which the penetration depth 1/ lz is 40 p~m .for crystals 

of  the elements at room temperature 

A b s o r p t i o n  coeff icients  were c a l c u l a t e d  f rom the p a r a m e t e r s  in 

International Tables for X-ray Crystallography (1983). Crys ta l  
dens i t i e s  were o b t a i n e d  f rom the CRC Handbook of Chemistry and 
Physics (1972), in which they are usually quoted at 293 K. For the 
element C, diamond is represented; for other elements with a range 
of allotropes, the chosen density is either that of the most common 
variant or the median. 

Wave-  Wave-  Wave-  

l eng th  length  length  
E l e m e n t  ( i t )  E l e m e n t  (A)  E l e m e n t  (A)  

Li 14.859 Ge 0.630 Pr 0.634 
Be 7.285 As 0.596 Nd 0.621 
B 5.675 Se 0.621 Pm 0.604 
C 3.936 Rb 1.738 Sm 0.577 
N 6.472 Sr 0.721 Eu 0.646 
Na 3.235 Y 0.564 Gd 0.548 
Mg 2.432 Zr 0.494 Tb 0.530 
AI 1.936 Nb 0.420 Dy 0.514 
Si 1.879 Mo 0.385 Ho 0.500 
P 1.789 Tc 0.361 Er 0.486 
S 1.750 Ru 0.343 Tm 0.473 
K 2.000 Rh 0.336 Yb 0.517 
Ca 1.539 Pd 0.334 Lu 0.449 
Sc i.157 Ag 0.345 Hf 0.397 
Ti 0.951 Cd 0.365 Ta 0.360 
V 0.818 In 0.383 W 0.337 
Cr 0.740 Sn 0.377 Re 0.322 
Mn 0.707 Sb 0.385 Os 0.309 
Fe 0.664 Te 0.747 Ir 0.305 
Co 0.614 I 0.795 Pt 0.306 
Ni 0.592 Cs 1.092 Au 0.313 
Cu 0.572 Ba 0.852 Hg 0.352 
Zn 0.601 ka 0.679 TI 0.365 
Ga 0.625 Ce 0.646 Pb 0.365 

Bi 0.382 

the beam. In any plane parallel to the scattering plane, 
the cross section of the crystal is therefore the same 
and hence the absorption integral the same. In these 
circumstances the planar analytic method of Howells 
(1950) can be employed, which is simpler though by 
no means trivial. We have also used cylindrical rods 
oriented perpendicular to the scattering plane. In this 
case the absorption is independent of the rotation 
angle of the sample. 

At high absorptions only those parts of the crystal 
that are directly seen by both incident beam and 
detector contribute significantly to the scattering. The 
scattering volume involved, and hence the effective 
size of the sample, shrinks rapidly with increasing 
wavelength. When the departures of the real crystal 
shape from the modelled shape become comparable 
to the penetration depth of the radiation, the absorp- 
tion calculation loses its validity. There are many 
possible causes for such departures. Taking 40 p~m as 
an estimate of the modelling accuracy (sometimes 
one can do better, often worse), the corresponding 
linear absorption coefficient is 250cm -~. Table 1 
shows the wavelengths at which the absorption 
coefficient has risen to this value for crystals of the 
elements at room temperature. In effect, it shows the 
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wavelength limit for reliable modelling of these crys- 
tal shapes. A given element clearly has a less limiting 
effect when it occurs in a compound. 

At the wavelengths shown and at all longer 
wavelengths on the same side of the absorption edge, 
the effective scattering volume is small. It can be seen 
that high absorption is particularly damaging to the 
energy-dispersive technique once elements as heavy 
as the transition metals are reached. Either heavy 
elements should be present only dilutely in a com- 
pound or the energy-dispersive technique should be 
operated in the hardest X-ray wavelength range. It is 
for heavy-element materials that the extended-face 
geometry comes back into its own. 

Absorption may also limit the radial resolution that 
can be achieved. If the lattice constant is large or the 
range of scattering vectors of interest is small, it is 
advantageous to scan at small 20. If the crystal absorbs 
significantly, however, the absorption increases 
strongly as 20 becomes small, with a corresponding 
decrease in scattered-beam strength. This decrease in 
intensity can be sufficient to make measurements 
impractical at small 20, as is illustrated by representa- 
tive numbers in Fig. 4. These were evaluated for a 
silicon cylinder of 1 mm radius, as detailed in the Fig. 
4 caption. The changes in the absorption integral of 
(19) may not look spectacular because they are shown 
on a logarithmic scale. In [A(0, ~ ,X ,w ,A) ]=6  rep- 
resents an absorption factor of about 400 and hence 
a reduction in observed intensity by 400 from what 
it would have been if the absorption were negligible. 
If this number, for example, represented the practical 
upper limit of absorption, then Fig. 4 shows that 
measurements on the sample could not be made below 

1 0 -  

8 

.2 6 

2 
4 

X.__ 
210 ~ J i i I 1 

0 4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  
2 e  

Fig. 4. The changing absorption contribution, from (19), with 
20 for a range of absorption coefficients. Note that 
In [A(0, ~0, X, to, A)] is plotted since the changes are too large to 
show on a linear scale. The sample is a cylinder of silicon of 
radius 1 mm, oriented perpendicular to the scattering plane. 
[] Variation with low absorption (A=0.5,~,  ~z=5.6cm-I) ;  
A medium absorption (A = 1.0 ,~,/x = 40.3 cm-1); * high absorp- 
tion (h = 1.5 ~ ,  tz = 130.6 cm-~). 

20 = 40 o while retaining the wavelength range 0.5 to 
].5 A. 

Remaining terms 

The effect of incident-beam cross fire, finite sample 
and detector sizes, and the sample mosaic spread on 
the resolution-function correction term D in (18) has 
been dealt with at some length by Reid (1981). For 
an energy-dispersive scattering configuration on a 
synchrotron-radiation station, all aspects of the 
experimental arrangement tend to keep these effects 
small and D correspondingly small. The largest 
influence on the resolution correction is likely to be 
the energy resolution of the detector which, through 
(16) and (17), results in a convolution of the scattering 
intensity with a Gaussian profile of standard devi- 
ation AHWHM(E)/1.167. In the results presented in 
paper I I, no deconvolution has been attempted. 

The final term e(A) can be estimated from the 
known behaviour of the detector and of absorption 
of air and windows in the path length, e(A) includes 
not only the intrinsic photon-counting-efficiency vari- 
ation but also the effects of uncorrected differential 
nonlinearity of the MCA, which affects the count 
recorded in each channel. However, the variation of 
e(A) can also be measured by using the inherent 
redundancy of Laue geometry. The same scattering 
vector K may be measured at different wave vectors 
by changing 20 and simultaneously rotating the crys- 
tal by 0 about the main diffractometer axis. Alterna- 
tively, an amorphous sample may be used and the 
sample rotation ignored. Equation (10) shows that a 
feature in the converted spectrum that appears at a 
given d* will be due to a wavelength that varies as 
sin 0. One strategy is to track a reference wavelength, 
for which e(A) can be taken as unity, through the 
spectrum by a series of measurements at different 0. 
A second approach is to measure two spectra at angles 
of 0 differing by a few degrees and deduce by interpo- 
lation and iteration the function Oe/OA from the ratio 
of the converted results at constant d*. In either case, 
appeal has to be made to one calculated value. Of 
course, one or more values may be obtained for e(A) 
from measurements on a standard scattering sample, 
whose absolute cross section is known at one or more 
values of d*. 

Concluding remarks 

It is too early to say whether the potential advantages 
of the white-radiation technique outlined in the 
Introduction will lead to its widespread application. 
Much depends on the accuracy achieved for the con- 
version to absolute units by use of the principles 
discussed here. Much also depends on practical 
matters such as the satisfactory alignment of small 
samples on supports that do not themselves provide 
comparable diffuse scattering; on the control of 
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geometrical factors to obtain adequate resolution; on 
the avoidance of fluorescence that can saturate the 
present generation of energy-dispersive detectors and 
thereby swamp the diffuse scattering. The first and 
last of these points introduce significant extra difficul- 
ties with white radiation over the use of monochro- 
matic X-rays or neutrons. 

The most promising applications are with light- 
element materials, where the absorption of ade- 
quately sized samples is modest for wavelengths 
below 1 A and their fluorescence above 2 A is either 
beyond the energy response of the detector or can be 
readily blocked by a thin filter. Harada et al. (1984) 
have demonstrated that applications are also possible 
with heavy-element materials, where the K fluores- 
cence is too hard to be excited and the L fluorescence 
can be tolerated. Paper II of this series will discuss 
results obtained using light elements. 

The author would like to thank the Science and 
Engineering Research Council for grant support dur- 
ing the development of this subject; staff at the Dares- 
bury Synchrotron Radiation Laboratory for their 
encouragement, particularly Phil Pattison (now 
developing facilities at ESRF); at Aberdeen Univer- 
sity, John D. Pirie and Stephen D. Clackson for 
discussions during the practical development of the 
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Abstract 

M6ssbauer diffraction experiments were performed 
on a single crystal of lithium heptagermanate in the 
temperature range 250-350 K. The high energy reso- 
lution of resonant y radiation was used to separate 

* Present address: Department of Physics, Faculty of Liberal 
Arts, Shinshu University, Matsumoto, Japan. 

elastically and inelastically scattered components. A 
lattice expansion along c and a decrease of the 
intensity of the elastically scattered radiation (IBr.~gg) 
connected with an increase of the intensity of the 
inelastically scattered radiation (IvDs) are observed 
at the transition from the para- to the ferroelectric 
phase at 283.5 K. The experimentally determined 
maximum of ITDS/laragg appearing at the phase transi- 
tion is much more pronounced in comparison with 
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